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1 Introduction 

This guide describes the internal architecture of the OpenMM library.  It is targeted at 

developers who want to add features to OpenMM, either by modifying the core library 

directly or by writing plugins.  If you just want to write applications that use OpenMM, you 

do not need to read this guide; the Users Manual tells you everything you need to know.  

This guide is only for people who want to contribute to OpenMM itself. 

 

It is organized as follows: 

 

• Chapter 2 describes the architecture of the core OpenMM library.  It discusses 

how the high level and low level APIs relate to each other, and the flow of 

execution between them. 

• Chapter 3 describes in detail how to write a plugin.  It focuses on the two most 

common types of plugins: those which define new Forces, and those which 

implement new Platforms. 

• Chapter 4 discusses the architecture of the reference Platform, providing 

information relevant to writing reference implementations of new features. 

• Chapter 5 discusses the architecture of the OpenCL Platform, providing 

information relevant to writing OpenCL implementations of new features. 

 

This guide assumes you are already familiar with the public API and how to use OpenMM in 

applications.  If that is not the case, you should first read the Users Manual and work 

through some of the example programs. 



 

 

2 The Core Library 

OpenMM is based on a layered architecture, as shown in the following diagram: 

 

Figure	  2.1:	  	  OpenMM	  architecture	  

 

The public API layer consists of the classes you access when using OpenMM in an 

application: System; Force and its subclasses; Integrator and its subclasses; and Context.  

These classes define a public interface but do no computation. 

 

The next layer down consists of “implementation” classes that mirror the public API classes: 

ContextImpl, ForceImpl, and a subclass of ForceImpl for each subclass of Force 

(HarmonicBondForceImpl, NonbondedForceImpl, etc.).  These objects are created 

automatically when you create a Context.  They store information related to a particular 

simulation, and define methods for performing calculations. 

 

Note that, whereas a Force is logically “part of” a System, a ForceImpl is logically “part of” a 

Context.  If you create many Contexts for simulating the same System, there is still only one 
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System and only one copy of each Force in it.  But there will be separate ForceImpls for each 

Context, and those ForceImpls store information related to their particular Contexts. 

 

Also note that there is no “IntegratorImpl” class, because it is not needed.  Integrator is 

already specific to one Context.  Many Contexts can all simulate the same System, but each 

of them must have its own Integrator, so information specific to one simulation can be 

stored directly in the Integrator. 

 

The next layer down is the OpenMM Low Level API (OLLA).  The important classes in this 

layer are: Platform; Kernel; KernelImpl and its subclasses; and KernelFactory.  A Kernel is 

just a reference counted pointer to a KernelImpl; the real work is done by KernelImpl 

objects (or more precisely, by instances of its subclasses).  A KernelFactory creates 

KernelImpl objects, and a Platform ties together a set of KernelFactories, as well as defining 

information that applies generally to performing computations with that Platform. 

 

All of these classes (except Kernel) are abstract.  A particular Platform provides concrete 

subclasses of all of them.  For example, the reference platform defines a Platform subclass 

called ReferencePlatform, a KernelFactory subclass called ReferenceKernelFactory, and a 

concrete subclass of each abstract KernelImpl type: ReferenceCalcNonbondedForceKernel 

extends CalcNonbondedForceKernel (which in turn extends KernelImpl), 

ReferenceIntegrateVerletStepKernel extends IntegrateVerletStepKernel, and so on. 

 

We can understand this better by walking through the entire sequence of events that takes 

place when you create a Context.  As an example, suppose you create a System; add a 

NonbondedForce to it; create a VerletIntegrator; and then create a Context for them using 

the reference Platform.  Here is what happens. 

 

1. The Context constructor creates a ContextImpl. 

2. The ContextImpl calls createImpl() on each Force in the System, which creates an 

instance of the appropriate ForceImpl subclass. 

3. The ContextImpl calls contextCreated() on the Platform(), which in turn calls 

setPlatformData() on the ContextImpl.  This allows Platform-specific 

information to be stored in a ContextImpl.  Every Platform has its own mechanism 
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for storing particle masses, constraint definitions, particle positions, and so on.  

ContextImpl therefore allows the Platform to create an arbitrary block of data and 

store it where it can be accessed by that Platform’s kernels. 

4. The ContextImpl  calls createKernel() on the Platform several times to get 

instances of various kernels that it needs: CalcKineticEnergyKernel, 

ApplyConstraintsKernel, etc. 

a. For each kernel, the Platform looks up which KernelFactory has been 

registered for that particular kernel.  In this case, it will be a 

ReferenceKernelFactory. 

b. It calls createKernelImpl()  on the KernelFactory, which creates and 

returns an instance of an appropriate KernelImpl subclass: 

ReferenceCalcKineticEnergyKernel, ReferenceApplyConstraintsKernel, etc. 

5. The ContextImpl loops over all of its ForceImpls and calls initialize() on each 

one. 

a. Each ForceImpl asks the Platform to create whatever kernels it needs.  In this 

example, NonbondedForceImpl will request a CalcNonbondedForceKernel, 

and get back a ReferenceCalcNonbondedForceKernel. 

6. The ContextImpl calls initialize() on the Integrator which, like the other 

objects, requests kernels from the Platform.  In this example, VerletIntegrator 

requests an IntegrateVerletStepKernel and gets back a 

ReferenceIntegrateVerletStepKernel. 

 

At this point, the Context is fully initialized and ready for doing computation.  Reference 

implementations of various KernelImpls have been created, but they are always referenced 

through abstract superclasses.  Similarly, data structures specific to the reference Platform 

have been created and stored in the ContextImpl, but the format and content of these 

structures is opaque to the ContextImpl.  Whenever it needs to access them (for example, to 

get or set particle positions), it does so through a kernel (UpdateStateDataKernel in this 

case). 

 

Now suppose that you call step() on the VerletIntegrator.  Here is what happens to execute 

each time step. 
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1. The VerletIntegrator calls updateContextState() on the ContextImpl.  This gives 

each Force an opportunity to modify the state of the Context at the start of each time 

step. 

a. The ContextImpl loops over its ForceImpls and calls 

updateContextState() on each one.  In this case, our only ForceImpl is a 

NonbondedForceImpl, which returns without doing anything.  On the other 

hand, if we had an AndersenThermostat in our System, its ForceImpl would 

invoke a kernel to modify particle velocities. 

2. The VerletIntegrator calls calcForcesAndEnergy() on the ContextImpl to 

request that the forces be computed. 

a. The ContextImpl calls beginComputation() on its 

CalcForcesAndEnergyKernel.  This initializes all the forces to zero and does 

any other initialization the Platform requires before forces can be computed.  

For example, some Platforms construct their nonbonded neighbor lists at this 

point. 

b. The ContextImpl loops over its ForceImpls and calls 

calcForcesAndEnergy() on each one.  In this case, we have a 

NonbondedForceImpl which invokes its CalcNonbondedForceKernel to 

compute forces. 

c. Finally, the ContextImpl calls finishComputation() on its 

CalcForcesAndEnergyKernel.  This does any additional work needed to 

determine the final forces, such as summing the values from intermediate 

buffers. 

3. Finally, the VerletIntegrator invokes its IntegrateVerletStepKernel.  This takes the 

forces, positions, and velocities that are stored in a Platform-specific format in the 

ContextImpl, uses them to compute new positions and velocities, and stores them in 

the ContextImpl. 



 

 

3 Writing Plugins 

A plugin is a dynamic library that adds new features to OpenMM.  It is typically stored in the 

lib/plugins directory inside your OpenMM installation, and gets loaded along with all 

other plugins when the user calls 

 

Platform::loadPluginsFromDirectory( 

Platform::getDefaultPluginsDirectory()); 

 

It is also possible to load plugins from a different directory, or to load them individually by 

calling Platform::loadPluginLibrary(). 

 

Every plugin must implement two functions that are declared in the PluginInitializer.h 

header file: 

 

extern "C" void registerPlatforms(); 

extern "C" void registerKernelFactories(); 

 

When a plugin is loaded, these two functions are invoked to register any Platforms and 

KernelFactories defined by the plugin.  When many plugins are loaded at once by calling 

Platform::loadPluginsFromDirectory(), registerPlatforms() is first called on 

all of them, then registerKernelFactories() is called on all of them.  This allows one 

plugin to define a Platform, and a different plugin to add KernelFactories to it; the Platform 

is guaranteed to be registered by the first plugin before the second plugin tries to add its 

KernelFactories, regardless of what order the plugins happen to be loaded in. 

3.1 Creating New Platforms 

One common type of plugin defines a new Platform.  There are two such plugins that come 

with OpenMM: one for the CUDA Platform and one for the OpenCL Platform. 
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To define a new Platform, you must create subclasses of the various abstract classes in the 

OpenMM Low Level API: a subclass of Platform, one or more subclasses of KernelFactory, 

and a subclass of each KernelImpl.  That is easy to say, but a huge amount of work to 

actually do.  There are many different algorithms involved in computing forces, enforcing 

constraints, performing integration, and so on, all of which together make up a Platform.  Of 

course, there is no requirement that every Platform must implement every possible feature.  

If you do not provide an implementation of a particular kernel, it simply means your 

Platform cannot be used for any simulation that requires that kernel; if a user tries to do so, 

an exception will be thrown. 

 

Your plugin’s registerPlatforms() function should create an instance of your Platform 

subclass, then register it by calling Platform::registerPlatform().  You also must 

register the KernelFactory for each kernel your Platform supports.  This can be done in the 

registerKernelFactories() function, or more simply, directly in the Platform’s 

constructor.  You can use as many different KernelFactories as you want for different 

kernels, but usually it is simplest to use a single KernelFactory for all of them.  The support 

for multiple KernelFactories exists primarily to let plugins add new features to existing 

Platforms, as described in the next section. 

 

3.2 Creating New Forces 

Another common type of plugin defines new Forces and provides implementations of them 

for existing Platforms.  (Defining new Integrators is not specifically discussed here, but the 

process is very similar.)  There are two such plugins that come with OpenMM: one for the 

AMOEBA force field, and one that provides various forces useful in free energy calculations. 

 

As an example, suppose you want to create a new Force subclass called StringForce that uses 

the equations of String Theory to compute the interactions between particles.  You want to 

provide implementations of it for all three standard platforms: reference, CUDA, and 

OpenCL. 
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The first thing to realize is that this cannot be done with only a plugin library.  Plugins are 

loaded dynamically at runtime, and they relate to the low level API; but you must also 

provide a public API.  Users of your class need to create StringForce objects and call 

methods on them.  That means providing a header file with the class declaration, and a (non-

plugin) library with the class definition to link their code against.  The implementations for 

particular Platforms can be in plugins, but the public API class itself cannot.  Or to put it 

differently, the full “plugin” (from the user’s perspective) consists of three parts: the library 

OpenMM loads at runtime (which is what OpenMM considers to be the “plugin”), a second 

library for users to link their code against, and a header file for them to include in their 

source code. 

 

The AMOEBA and FreeEnergy plugins go a step further: they also include their reference 

implementations in the non-plugin libraries, while using plugins for their CUDA 

implementations.  This is consistent with OpenMM itself, which defines the reference 

Platform directly in the main library.  You can do this for your own Force, or you can put the 

reference implementation in a plugin.  Either approach is reasonable. 

 

In any case, you will need to create the following classes: 

 

1. StringForce.  This is the public API for your force, and users will directly link against 

the library containing it. 

2. StringForceImpl.  This is the ForceImpl subclass corresponding to StringForce.  It 

should be defined in the same library as StringForce, and StringForce’s 

createImpl() method should create an instance of it. 

3. CalcStringForceKernel.  This is an abstract class that extends KernelImpl, and 

defines the API by which StringForceImpl invokes its kernel.  You only need to 

provide a header file for it, not an implementation; those will be provided by 

Platforms. 

 

Now suppose you are writing the OpenCL implementation of StringForce.  Here are the 

classes you need to write: 
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1. OpenCLCalcStringForceKernel.  This extends CalcStringForceKernel and provides 

implementations of its virtual methods.  The code for this class will probably be very 

complicated (and if it actually works, worth a Nobel Prize).  It may execute many 

different GPU kernels and create its own internal data structures.  But those details 

are entirely internal to your own code.  As long as this class implements the virtual 

methods of CalcStringForceKernel, you can do anything you want inside it. 

2. OpenCLStringForceKernelFactory.  This is a KernelFactory subclass that knows how 

to create instances of OpenCLCalcStringForceKernel. 

 

Both of these classes should be packaged into a dynamic library (.so on Linux, .dylib on Mac, 

.dll on Windows) that can be loaded as a plugin.  This library must also implement the two 

functions from PluginInitializer.h. registerPlatforms() will do nothing, since this 

plugin does not implement any new Platforms.  registerKernelFactories() should 

call Platform::getPlatformByName("OpenCL") to get the OpenCL Platform, then 

create a new OpenCLStringForceKernelFactory and call registerKernelFactory() on 

the Platform to register it.  If the OpenCL Platform is not available, you should catch the 

exception then return without doing anything.  Most likely this means there is no OpenCL 

runtime on the computer your code is running on. 



 

 

4 The Reference Platform 

The reference Platform is written with simplicity and clarity in mind, not performance.  (It is 

still not always as simple or clear as one might hope, but that is the goal.)  When 

implementing a new feature, it is recommended to create the reference implementation first, 

then use that as a model for the versions in other Platforms. 

 

The reference Platform represents all floating point numbers with the type RealOpenMM, 

which is defined in SimTKOpenMMRealType.h.  This allows the entire platform to be 

compiled in either single or double precision.  By default it is double precision, but it can be 

changed by modifying one flag at the top of that file.  The same file also defines lots of 

numerical constants and mathematical functions, so the correct precision version will always 

be used.  Vector quantities (positions, velocities, etc.) are represented by RealVec objects.  

This class is identical to Vec3, except that its components are of type RealOpenMM instead 

of double. 

 

When using the reference Platform, the “platform-specific data” stored in ContextImpl is of 

type ReferencePlatform::PlatformData, which is declared in ReferencePlatform.h.  Several of 

the fields in this class are declared as void* to avoid having to include 

SimTKOpenMMRealType.h in ReferencePlatform.h.  If you look in ReferenceKernels.cpp, 

you will find code for extracting the correct values of these fields.  For example: 

 

static vector<RealVec>& extractPositions(ContextImpl& context) { 

    ReferencePlatform::PlatformData* data = 

reinterpret_cast<ReferencePlatform::PlatformData*>( 

context.getPlatformData()); 

    return *((vector<RealVec>*) data->positions); 

} 
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The PlatformData’s vector of forces contains one element for each particle.  At the start of 

each force evaluation, all elements of it are set to zero.  Each Force adds its own 

contributions to the vector, so that at the end, it contains the total force acting on each 

particle. 

 

There are a few additional classes that contain useful static methods.  

SimTKOpenMMUtilities has various utility functions, of which the most important is a 

random number generator.  ReferenceForce provides methods for calculating the 

displacement between two positions, optionally taking periodic boundary conditions into 

account. 



 

 

5 The OpenCL Platform 

The OpenCL Platform is much more complicated than the reference Platform.  It also 

provides many more tools to simplify your work, but those tools themselves can be 

complicated to use correctly.  This chapter will attempt to explain how to use some of the 

most important ones.  It will not teach you how to program with OpenCL.  There are many 

tutorials on that subject available elsewhere, and this guide assumes you already understand 

it. 

5.1 Overview 

When using the OpenCL Platform, the “platform-specific data” stored in ContextImpl is of 

type OpenCLPlatform::PlatformData, which is declared in OpenCLPlatform.h.  The most 

important field of this class is contexts, which is a vector of OpenCLContexts.  (There is 

one OpenCLContext for each device you are using.  The most common case is that you are 

running everything on a single device, in which case there will be only one OpenCLContext.  

Parallelizing computations across multiple devices is not discussed here.)  The 

OpenCLContext stores most of the important information about a simulation: positions, 

velocities, forces, an OpenCL CommandQueue used for executing kernels, workspace buffers 

of various sorts, etc.  It provides many useful methods for compiling and executing kernels, 

clearing and reducing buffers, and so on.  It also provides access to three other important 

objects: the OpenCLIntegrationUtilities, OpenCLNonbondedUtilities, and 

OpenCLBondedUtilities.  These are discussed below. 

 

Allocation of device memory is generally done through the OpenCLArray class.  It takes care 

of much of the work of memory management, and provides a simple interface for 

transferring data between host and device memory. 

 

Every kernel is specific to a particular OpenCLContext, which in turn is specific to a 

particular OpenMM::Context.  This means that kernel source code can be customized for a 
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particular simulation.  For example, values such as the number of particles can be turned 

into compile-time constants, and specific versions of kernels can be selected based on the 

device being used or on particular aspects of the system being simulated.  

OpenCLContext::createProgram() makes it easy to specify a list of preprocessor 

definitions to use when compiling a kernel. 

 

The normal way to execute a kernel is by calling executeKernel() on the OpenCLContext.  

It allows you to specify the total number of work-items to execute, and optionally the size of 

each work-group.  (If you do not specify a work-group size, it uses 64 as a default.)  The 

number of work-groups to launch is selected automatically based on the work-group size, 

the total number of work-items, and the number of compute units in the device it will 

execute on. 

5.2 Computing Forces 

When forces are computed, they are stored in multiple buffers.  This is done to enable 

multiple work-items or work-groups to compute forces on the same particle at the same 

time; as long as each one writes to a different buffer, there is no danger of race conditions.  

At the start of a force calculation, all forces in all buffers are set to zero.   Each Force is then 

free to add its contributions to any or all of the buffers.  Finally, the buffers are summed to 

produce the total force on each particle. 

 

The size of each buffer is equal to the number of particles, rounded up to the next multiple of 

32.  Call getPaddedNumAtoms() on the OpenCLContext to get that number.  The actual 

force buffers are obtained by calling getForceBuffers().  The first n entries (where n is 

the padded number of atoms) represent the first force buffer, the next n represent the 

second force buffer, and so on.  More generally, the i’th force buffer’s contribution to the 

force on particle j is stored in element i*context.getPaddedNumAtoms()+j. 

 

Depending on the device, a buffer may also be created that stores contributions to the forces 

in 64 bit fixed point format.  On devices that support atomic operations on 64 bit integers in 

global memory, this can be a more efficient way of accumulating forces than using a large 

number of force buffers. 
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The potential energy is also accumulated in a set of buffers, but this one is simply a list of 

floats.  All of them are set to zero at the start of a computation, and they are summed at the 

end of the computation to yield the total energy. 

 

The OpenCL implementation of each Force object should define a subclass of OpenCLForce, 

and register an instance of it by calling addForce() on the OpenCLContext.  This serves 

two purposes: 

 

1. It reports how many force buffers are required when calculating this particular Force.  

The OpenCLContext sets the size of its force buffer array based on the largest number 

of buffers required by any Force. 

2. It implements methods for determining whether particular particles or groups of 

particles are identical.  This is important when reordering particles, and is discussed 

below. 

5.3 Nonbonded Forces 

Computing nonbonded interactions efficiently is a complicated business in the best of cases.  

It is even more complicated on a GPU.  Furthermore, the algorithms must vary based on the 

type of processor being used, whether there is a distance cutoff, and whether periodic 

boundary conditions are being applied. 

 

The OpenCLNonbondedUtilities class tries to simplify all of this.  To use it you need provide 

only a piece of code to compute the interaction between two particles.  It then takes 

responsibility for generating a neighbor list, looping over interacting particles, loading 

particle parameters from global memory, and writing the forces and energies to the 

appropriate buffers.  All of these things are done using an algorithm appropriate to the 

processor you are running on and high level aspects of the interaction, such as whether it 

uses a cutoff and whether particular particle pairs need to be excluded. 

 

Of course, this system relies on certain assumptions, the most important of which is that the 

Force can be represented as a sum of independent pairwise interactions.  If that is not the 
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case, things become much more complicated.  You may still be able to use features of 

OpenCLNonbondedUtilities, but you cannot use the simple mechanism outlined above.  

That is beyond the scope of this guide. 

 

To define a nonbonded interaction, call addInteraction() on the 

OpenCLNonbondedUtilities, providing a block of OpenCL source code for computing the 

interaction.  This block of source code will be inserted into the middle of an appropriate 

kernel.  At the point where it is inserted, various variables will have been defined describing 

the interaction to compute: 

 

• atom1 and atom2 are the indices of the two interacting particles. 

• r, r2, and invR are the distance r between the two particles, r2, and 1/r respectively. 

• isExcluded is a bool specifying whether this pair of particles is marked as an 

excluded interaction.  (Excluded pairs are not skipped automatically, because in 

some cases they still need to be processed, just differently from other pairs.) 

• posq1 and posq2 are float4s containing the positions (in the xyz fields) and charges 

(in the w fields) of the two particles. 

• Other per-particle parameters may be specified, as described below. 

 

The following preprocessor macros will also have been defined: 

 

• NUM_ATOMS is the total number of particles in the system. 

• PADDED_NUM_ATOMS is the padded number of particles in the system. 

• USE_CUTOFF is defined if and only if a cutoff is being used 

• USE_PERIODIC is defined if and only if periodic boundary conditions are being 

used. 

• CUTOFF_SQUARED is the square of the cutoff distance (but only defined if a cutoff is 

being used). 

 

Finally, two output variables will have been defined: 

 

• You should add the energy of the interaction to tempEnergy. 
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• You should add the derivative of the energy with respect to the inter-particle distance 

to dEdR. 

 

You can also define arbitrary per-particle parameters by calling addParameter() on the 

OpenCLNonbondedUtilities.  You provide an array in device memory containing the set of 

values, and the values for the two interacting particles will be loaded and stored into 

variables called <name>1 and <name>2, where <name> is the name you specify for the 

parameter.  Note that nonbonded interactions are not computed until after 

calcForcesAndEnergy() has been called on every ForceImpl, so it is possible to make 

the parameter values change with time by modifying them inside 

calcForcesAndEnergy().  Also note that the length of the array containing the 

parameter values must equal the padded number of particles in the system. 

 

Finally, you can specify arbitrary other memory objects that should be passed as arguments 

to the interaction kernel by calling addArgument().  The rest of the kernel ignores these 

arguments, but you can make use of them in your interaction code. 

 

Consider a simple example.  Suppose we want to implement a nonbonded interaction of the 

form E=k1k2r2, where k is a per-particle parameter.  First we create a parameter as follows 

 

nb.addParameter(OpenCLNonbondedUtilities::ParameterInfo( 

"kparam", "float", 1, sizeof(cl_float), 

kparam->getDeviceBuffer())); 

 

where nb is the OpenCLNonbondedUtilities for the context.  Now we call 

addInteraction() to define an interaction with the following source code: 

 

#ifdef USE_CUTOFF 

if (!isExcluded && r2 < CUTOFF_SQUARED) { 

#else 

if (!isExcluded) { 

#endif 

    tempEnergy += kparam1*kparam2*r2; 
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    dEdR += 2*kparam1*kparam2*r; 

} 

 

An important point is that this code is executed for every pair of particles in the padded list 

of atoms.  This means that some interactions involve padding atoms, and should not actually 

be included.  You might think, then, that the above code is incorrect and we need another 

check to filter out the extra interactions: 

 

if (atom1 < NUM_ATOMS && atom2 < NUM_ATOMS) 

 

This is not necessary in our case, because the isExcluded flag is always set for interactions 

that involve a padding atom.  If our force did not use excluded interactions (and so did not 

check isExcluded), then we would need to add this extra check.  Self interactions are a 

similar case: we do not check for (atom1 == atom2) because the exclusion flag prevents 

them from being processed, but for some forces that check is necessary. 

5.4 Bonded Forces 

Just as OpenCLNonbondedUtilities simplifies the task of creating nonbonded interactions, 

OpenCLBondedUtilities simplifies the process for many types of bonded interactions.  A 

“bonded interaction” means one that is applied to small, fixed groups of particles.  This 

includes bonds, angles, torsions, etc.  The important point is that the list of particles forming 

a “bond” is known in advance and does not change with time. 

 

Using OpenCLBondedUtilities is very similar to the process described above.  You provide a 

block of OpenCL code for evaluating a single interaction.  This block of code will be inserted 

into the middle of a kernel that loops over all interactions and evaluates each one.  At the 

point where it is inserted, the following variables will have been defined describing the 

interaction to compute: 

 

• index is the index of the interaction being evaluated. 

• atom1, atom2, ... are the indices of the interacting particles. 
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• pos1, pos2, ... are float4s containing the positions (in the xyz fields) of the 

interacting particles. 

 

A variable called energy will have been defined for accumulating the total energy of all 

interactions.  Your code should add the energy of the interaction to it.  You also should 

define float4 variables called force1, force2, ... and store the force on each atom into 

them. 

 

As a simple example, the following source code implements a pairwise interaction of the 

form E=r2: 

 

float4 delta = pos2-pos1; 

energy += delta.x*delta.x + delta.y*delta.y + delta.z*delta.z; 

float4 force1 = 2.0f*delta; 

float4 force2 = -2.0f*delta; 

 

To use it, call addInteraction() on the Context’s OpenCLBondedUtilities object.  You 

also provide a list of the particles involved in every bonded interaction. 

 

Exactly as with nonbonded interactions, you can call addArgument() to specify arbitrary 

memory objects that should be passed as arguments to the interaction kernel.  These might 

contain per-bond parameters (use index to look up the appropriate element) or any other 

information you want. 

5.5 Reordering of Particles 

Nonbonded calculations are done a bit differently in the OpenCL Platform than in most CPU 

based codes.  In particular, interactions are computed on blocks of 32 sequential particles at 

a time (which is why the number of particles needs to be padded to bring it up to a multiple 

of 32), and the neighbor list actually lists pairs of blocks, not pairs of individual particles, 

that are close enough to interact with each other. 
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This only works well if sequential particles tend to be close together so that blocks are 

spatially compact.  This is generally true of particles in a macromolecule, but it is not true for 

solvent molecules.  Each water molecule, for example, can move independently of other 

water molecules, so particles that happen to be sequential in whatever order the molecules 

were defined in need not be spatially close together. 

 

The OpenCL Platform addresses this by periodically reordering particles so that sequential 

particles are close together.  This means that what the OpenCL Platform calls particle i need 

not be the same as what the System calls particle i. 

 

This reordering is done frequently, so it must be very fast.  If all the data structures 

describing the structure of the System and the Forces acting on it needed to be updated, that 

would make it prohibitively slow.  The OpenCL Platform therefore only reorders particles in 

ways that do not alter any part of the System definition.  In practice, this means exchanging 

entire molecules; as long as two molecules are truly identical, their positions and velocities 

can be exchanged without affecting the System in any way. 

 

Every Force can contribute to defining the boundaries of molecules, and to determining 

whether two molecules are identical.  This is done through the OpenCLForceInfo it adds to 

the OpenCLContext.  It can specify two types of information: 

 

1. Given a pair of particles, it can say whether those two particles are identical (as far as 

that Force is concerned).  For example, a Force object implementing a Coulomb force 

would check whether the two particles had equal charges. 

2. It can define particle groups.  The OpenCL Platform will ensure that all the particles 

in a group are part of the same molecule.  It also can specify whether two groups are 

identical to each other.  For example, in a Force implementing harmonic bonds, each 

group would consist of the two particles connected by a bond, and two groups would 

be identical if they had the same spring constants and equilibrium lengths. 

5.6 Integration Utilities 
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The OpenCLContext’s OpenCLIntegrationUtilities provides features that are used by many 

integrators.  The two most important are random number generation and constraint 

enforcement. 

 

If you plan to use random numbers, you should call initRandomNumberGenerator() 

during initialization, specifying the random number seed to use.  Be aware that there is only 

one random number generator, even if multiple classes make use of it.  If two classes each 

call initRandomNumberGenerator() and request different seeds, an exception will be 

thrown.  If they each request the same seed, the second call will simply be ignored. 

 

For efficiency, random numbers are generated in bulk and stored in an array in device 

memory, which you can access by calling getRandom().  Each time you need to use a block 

of random numbers, call prepareRandomNumbers(), specifying how many values you 

need.  It will register that many values as having been used, and return the index in the array 

at which you should start reading values.  If not enough unused values remain in the array, it 

will generate a new batch of random values before returning. 

 

To apply constraints, simply call applyConstraints().  For numerical accuracy, the 

constraint algorithms do not work on particle positions directly, but rather on the 

displacements taken by the most recent integration step.  These displacements must be 

stored in an array which you can get by calling getPosDelta().  That is, the constraint 

algorithms assume the actual (unconstrained) position of each particle equals the position 

stored in the OpenCLContext plus the delta stored in the OpenCLIntegrationUtilities.  It 

then modifies the deltas so that all distance constraints are satisfied.  The integrator must 

then finish the time step by adding the deltas to the positions and storing them into the main 

position array. 


